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Abstract 

The polarization factor for coherent scattering from a 
crystalline or non-crystalline sample can be calculated 
easily for any number of pre- and post-sample 
scatterers of any orientation. No complicated 
visualization is necessary. Either an analytical or a 
numerical method can be used. Simple repeated matrix 
multiplication is used to determine the polarization 
factor. The technique is illustrated for a Bonse-Hart 
instrument having 13 scattering processes. 

Introduction 

When only one or two scattering processes are 
considered, the ideal polarization factor often can be 
derived easily considering the orientation and compo- 
nents of the electric vector before and after each 
scattering process. The ideal polarization factor is the 
usual one used in kinematical diffraction theory. For 
more complicated cases the geometry can become very 
difficult to visualize, and analytical equations for the 
ideal polarization factor P can become very 
complicated. 

Vincent (1982) derived equations for calculating the 
ideal polarization factor for any number of pre-sample 
scatterers, with the restriction that all scattering planes 
are either normal or parallel to all other scattering 
planes for all of the pre-sample scatterers. He indicates 
that equations can be derived for other orientations of 
planes, but the resulting equations become complicated. 
Post-sample scatterers were not considered. 

A general method for determining the ideal 
polarization factor has existed for many years. The 
origin of it is over a century old (Stokes, 1852). The 
Stokes parameters describe the state of polarization of 
radiation. Since this early work, a large number of 
persons have developed methods for calculating ideal 
polarization factors based on matrix operations on the 
Stokes parameters. McMaster (1961) reviewed this 
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subject and gave several references. The matrix method 
has seldom been used in X-ray scattering studies, 
although it was used to derive the intensity of 
secondary scattering in non-crystalline materials 
(Dwiggins & Park, 1971; Dwiggins, 1972). An 
advantage of using such a matrix method is that either 
numerical or analytical expressions can be determined 
using only simple matrix multiplication. 

In this paper the matrix method is adapted for X-ray 
scattering studies used for investigations of structure. 
Only coherent radiation is considered at first, but 
incoherent radiation will be discussed. Although X-ray 
tubes produce unpolarized characteristic radiation, 
completely polarized radiation is allowed because 
synchrotron radiation that is nearly completely 
polarized now is used for some studies (Vincent, 1982). 
Circular polarization is not allowed, although it is 
possible to include it, because the resulting equations 
would be much more complicated and because high- 
intensity X-ray sources with circular polarization are 
not yet available. 

When strongly diffracting crystals are used as 
monochromators, as often is the case in single-crystal 
structure studies, dynamical rather than kinematical 
theory applies and the degree of perfection can 
influence the polarization factor greatly (Jennings, 
1981; Mathieson, 1982). This requires a modification in 
McMaster's matrix treatment. 

Theory 

The review paper of McMaster (1961) should be 
consulted for details concerning the matrix method for 
determining polarization factors. The general form of 
the matrix method involves matrix multiplication of sets 
of four different types of matrices. In this paper, 
matrices will be indicated by bold-face capital type, 
while vectors will be indicated by bold-face lower-case 
type. 

A brief description of how the Stokes parameters are 
used in matrix form follows using the formalism of 
McMaster (1954). 

The state of photons is characterized by four 
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parameters that usually are given in column matrix 
form but are given in row matrix form here to save 
space. The matrix giving the Stokes parameters is 
(I,p~,p2,p3). The I represents intensity, and it often is 
normalized to unity. The three p parameters specify the 
state of polarization. An unpolarized beam is represen- 
ted by (1,0,0,0). A coordinate system can be found 
such that a plane-polarized beam is represented either 
by (1,+1,0,0) or by (1,0,+1,0). A beam with circular 
polarization is represented by (1,0,0,+1) in some 
coordinate systems. Partial polarization results in 
non-zero terms in both Pl and P2 that cannot be 
eliminated by rotation of the coordinate system. 

The Stokes parameters depend on the choice of axes. 
Thus, when one rotates from one scattering plane to 
another scattering plane the Stokes parameters must be 
converted to a new coordinate system. This is done 
using a four-dimensional matrix M such that the Stokes 
parameters in a new primed coordinate system are 
related to those in the old system by (I',p'~,p'2,p' 3) = 
M(I,  pl,P2,P3). 

The polarization factor P is multiplied by intensities 
obtained from theory so that they can be compared 
with observed intensities, or 1/P is multiplied by 
experimental intensities to eliminate the polarization 
effect. 

If there are n scatterers including the sample 
identified by the subscript s, then the unnormalized 
polarization factor P is given by a matrix product 

P= (DTnMn,n_ 1. • .Ts+ 1)(Ms+,,sTs Ms,s_ 1) 
X (Ts_l...M2.1TIU). (1) 

The T represents scattering, and the M represents 
rotations of the scattering planes. The D represents 
detection, and the U represents the X-ray source. 

McMaster's (1961) treatment is kinematical, but 
dynamical scattering theory often applies for thick 
crystals used for pre- and post-sample scatterers. 

For structural studies the sample must be kept small 
enough to be described by kinematical theory or by 
making small corrections for dynamical effects such as 
extinction. Differences between kinematical and 
dynamical scattering occur in the elements of the T 
matrices. 

The term enclosed in the first set of parentheses in 
(1) is defined as D c, and that enclosed in the last set of 
parentheses is defined as Uc. In most experiments all of 
the scatterers represented by T in D c are rigidly 
attadled to one another, and likewise for the scatterers 
in U c. Thus, Dc and U, do not vary as the scattering 
angle for the sample is changed. Using the defined 
terms, (1) is rewritten 

P = DcMs+ 1,s Ts Ms, s- 1 Uc. (2)  

Usually it is necessary to determine D c and U c only 
once for a fixed experimental arrangement, and thus 

calculation of P for a large number of points is 
simplified. 

Because circular polarization is not allowed, and 
only coherent scattering is considered at this point, the 
matrices are simplified greatly from those given by 
McMaster (1961). 

The matrix Tt representing scattering process i 
simplifies to 

a t c~ 0[ 
Tt=  c t a t 0 .  (3) 

0 0 b i 

For the ideal case, the value of the elements of T t are 

a t = (1 + cos 2 20t)/2, b t = cos 20 t, c i = (sin E 20t)/2, 

where 20 t is the total scattering angle for scattering 
process i. 

When some of the scattering processes are not ideal, 
a more general expression must be used with 

a t = ( 1  +Kt)/2,  b l = K Y  2, c i = ( 1 - K i ) / 2 .  

The term K, is the polarization ratio for scattering 
process i. For the ideal case, K t = cos 2 20 t. For a 
perfect crystal, K t = Icos 20tl. When a thick crystal 
scattering with high intensity is used, then K t for it must 
either be determined experimentally, or some experi- 
mental arrangement must be found that causes K~ to 
cancel. 

The matrix Mr+ 1.i represents rotation from the plane 
of scattering process i to the plane of scattering process 
i + 1, and it simplifies to 

I 1 0 0 J 
= f i +  ~ i • ( 4 )  Mr+l, ~ 0 di+l, i 

0 --fi+1,i di+i,i 
The elements of Mr+ i,~ are 

di+l, t = cos 2yt+l, t, fi+l,t = sin 2Yi+l,i. 

The angle Yl+ 1. t is the angle of right rotation required 
to rotate the plane of scattering process i to the plane of 
scattering process i + 1. In the special case that both 
the i and i + 1 scattering processes are in the same 
plane, Mt+l, t = 1, and thus this matrix can be deleted. 

The polarization of the incident X-ray beam is 
described by the matrix U that gives the Stokes 
parameters in column matrix form. The U matrix often 
will be written in row form to save space. 

If the incident X-rays are unpolarized, U simplifies to 
U = f 1,0,0 I. 

Some synchrotrons produce plane-polarized X- 
radiation. The term U for a plane-polarized X-ray 
beam is U = I1, cos 2~0, -s in  2~01. 

Let the incident X-ray beam be s o and the beam 
scattered by the first scattering point be s 1, with both 
vectors having the first scattering point as their origin. 
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The normal to the first scattering plane thus is given by 
the vector product, p = so × s~. Consider a reference 
plane through the first scattering point that is perpen- 
dicular to s 0. The normal p and the electric vector e of 
the incident polarized X-ray beam will both be in the 
reference plane. The angle ~o is given by 

¢~ = cos -1 {p. e(Ipl lel) -1 }. 

The matrix D is a row matrix representing detection. 
For the usual X-ray detectors that are not polarization 
sensitive, such as counters and films, then D simplifies 
to D = I 1,0,01. 

The polarization factor must be normalized so that it 
is equal to unity for zero scattering angle for the 
sample. In the less general case with no scatterers after 
the sample (Azaroff, 1955; Vincent 1982) nor- 
malization is done by division of P by the intensity just 
before the sample. In this general case, normalization 
can be done by division of P by the value of P obtained 
with 20 s = 0. Thus the normalized polarization factor 
P ,  is given by 

De Ms + 1,s Ts Ms, s- 1 Uc 
Pn = . (5) 

DcMs+l , sTo ,sMs,s -1Uc 

The matrix To, s is the matrix T s with 20~ = 0. 
If there is a very complicated geometry of pre- and 

post-sample scatterers, then numerical solution of (5) is 
simpler than obtaining a very lengthy analytical 
expression. One must know all of the 20 t and 
corresponding Kt values so that at, b~, and c~ can be 
calculated. All of the values of Yt+t,~ must be known so 
that dt+l, t andft+ 1,~ can be calculated. Also f0 must be 
known if the incident X-ray beam is polarized. With 
this numerical information one calculates D c and U c 
using numerical matrix multiplication. Finally, P~ is 
calculated using (5) for each data point. The time 
required to do these simple matrix multiplications is 
trivial using a modern computer. 

In many cases of interest, fairly simple analytical 
equations can be obtained. Thus some simplifications 
resulting for special cases will be examined next. 

In the special case that all scattering processes are in 
the same plane and a polarization-insensitive detector is 
used, all Mt+l, t can be deleted and all remaining 
matrices can be reduced to two-dimensional ones by 
deleting all third rows and columns. 

If there are q successive identical scattering pro- 
cesses in the same plane, then a term T q occurs in (5), 
which is given by 

li :l T q ---- Gt . (6) 

0 b q 

The term a is 

a = (1 + Kq)/2 .  (7) 

The term fl is 

fl = (1 -- Kq)/2 .  (8) 

The term K refers to the identical values of this term 
in a sequence of q matrices of type T. 

The Appendix gives a general method for calculating 
the terms 20 t and ~l+ 1,t. 

Example 

A Bonse-Hart  unit used by the author (Dwiggins, 
1978, 1980) has six pre- and six post-sample scatterers. 
If the 13 scattering processes were all in different planes 
an analytical expression could be obtained using matrix 
multiplication, but it would be several pages long. In 
such a case the numerical matrix multiplication method 
previously mentioned would be much easier to use. 

Since all of the scattering processes are in the same 
plane, all Mr+l, ~ matrices can be deleted. Because the 
detector is not sensitive to polarization, all remaining 
matrices thus reduce to two-dimensional ones. Also, all 
values of 20 l, except for 20 s for the sample, are identical 
and will be labeled 20. Thus, D c = DT 6 and Uc = T 6 U. 

Application of (7) and (8) results in 

a = (1 + K6)/2, fl = (1 - K6)/2. 

Thus the elements of T 6 can be determined using (6). 
Application of (5) gives P ,  = a s + 2csafl(a 2 + fl2)-1 for 
an unpolarized X-ray source with U = I1,0,01. 

Nearly perfect germanium crystals are used in the 
Bonse-Hart  instrument, so a value o f K  = Icos 201 for 
the perfect crystals probably is closer to the correct 
value than is K = cos 2 20 for ideal scattering. 

The Bonse-Hart  instrument uses 12 germanium 220 
reflections, giving 20 = 45.34 ° for the Cu Ka radiation 
used. Solving for P ,  for both the ideal scattering and 
the perfect-crystal cases gives P~ = 1 for all scattering 
angles 20 s for the sample to within 1.43%. The 
maximum allowed 20 s for the instrument is 10 °, and 
P~ = 1 to within 0 .022% for this range. Thus, for the 
described Bonse-Hart  instrument, the polarization 
factor can be neglected at all scattering angles for 
practical applications. 

If the incident X-radiation is completely polarized in 
a direction normal to the first scattering plane, then ¢ = 
0 and U = I1,1,01. Solving in the same manner as for 
the unpolarized beam gives P~ = 1 exactly for all values 
of 20~. This is in agreement with the results for a more 
simple case (Templeton, Templeton, Phillips & Hodg- 
son, 1980). 

If the polarized radiation is in the direction of the 
first scattering plane, then ~p = n/2 and U = I 1,-1,01. 
In this case, P,, = cos 2 20~ for a sample that scatters 
ideally. This is in agreement with the results for a more 
simple case (Vincent, 1982). 

If ~ = n/4,  then U = I1,0,-11. But in the special case 
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for the Bonse-Hart instrument, it was shown that all 
third rows and columns can be eliminated in the 
matrices. Thus the value obtained for P,  is exactly the 
same as for the unpolarized X-ray beam. 

The conclusion is that no polarization corrections 
need be made for the described Bonse-Hart instrument 
and using a polarized radiation source offers no 
advantages. However, for cases when P,, can vary 
considerably, using polarized radiation can eliminate 
errors caused by uncertainty in the correct K for thick 
highly reflecting crystals. 

Discussion 

The sample can be a liquid or gas as well as a crystal. 
However, low-atomic-number elements can produce a 
very high intensity of incoherent radiation at high 
scattering angles. The polarization correction for 
incoherent scattering is not the same as that for 
coherent scattering. At wavelengths usually used for 
structural studies, often 1.54 A, the difference in the 
coherent and incoherent polarization factors can be 
neglected. McMaster (196 l) gives the full T matrix for 
incoherent scattering, but using it adds considerable 
complexity and should be necessary only when 
radiation with a wavelength considerably less than 1/~ 
is used. A more important correction at shorter 
wavelengths is for the difference in the absorption for 
coherent and incoherent radiation (Dwiggins & Park, 
1971). 

Using either the ideal polarization factor or the one 
for a perfect crystal often can be grossly in error for the 
crystals of high reflecting power often used as mono- 
chromators in single-crystal structural studies. Deter- 
mining the correct polarization ratio K from experi- 
ment can be complicated and subject to several errors, 
some of which can be rather subtle (Mathieson, 1982; 
Jennings, 1981; LePage, Gabe & Calvert, 1979; Evans, 
Hine, Richards & Tichy, 1980; Vincent & Flack, 
1980). If the K cannot be determined with confidence, 
then either no monochromator should be used or a 
special geometry should be used that eliminates the 
polarization effect for the monochromator, such as the 
method of Mathieson (1978). 

It is unlikely that synchrotron sources of polarized 
X-radiation will be available for the bulk of routine 
structure determinations soon. Thus, using polarized 
radiation to eliminate K will be available only to a few. 
However, it is possible that polarized radiation might 
be helpful in determining K for crystals to be used as 
monochromators for unpolarized X-ray. sources, 
because K is the same for both polarized and 
unpolarized radiation when ~0 -- n/4 while the effect of 
K is completely eliminated for polarized radiation for 
rp -- 0 or for ~0 -- n/2. 

If a sample is studied for which full dynamical theory 

is required, using radiation polarized normal to the 
plane of scattering of the sample will eliminate K for the 
sample and thus any uncertainty in the polarization 
correction for the sample. This is not likely to be of 
much use for structural studies, because corrections for 
other dynamical effects often cannot be made ac- 
curately for somewhat imperfect crystals. 

APPENDIX 

The objective is to determine 20 t and 7t+ l,i values from 
the known geometry of the scattering process. A good 
illustration of the angle y is given in Fig. 4 of McMaster 
(1961), who labels the angle ~0. 

Let the ends of the vectors mj give the locations of 
the n scatterers in space in any instrumental coordinate 
system that is convenient. Let m o be the location of the 
X-ray source and ran+ 1 be the location of the detector. 
Then the vectors tj connecting the points mj to points 
mj+ 1 are 

t j  = m j  + l - -  m j . (A1) 

Using the vector scalar product, the total scattering 
angle 20 i for the scatterer i is 

20i=cos- l{( t i_~. t i ) ( I t i_ l l l t i l ) - l} .  (A2) 

Let n 1 be a normal to the plane defined by t~_ 1, ti and 
n 2 be a normal to the plane defined by t i, ti+ 1. Thus, if 
the coordinate system is right-handed and the usual 
right-handed convention is used for the vector product, 
the angles between the defined planes can be obtained 
by using the vector scalar products between the 
normals to the planes, resulting in 

) , i+l . i=cos-l{(nl .nz)(Inl l ln21) -1 } (/13) 

ms-2 

m S 

r 

ms+l 

ts-i / \ \  I 
\ \  / /  

x 

Fig. 1. Example of scattering geometry with the sample m s located 
at the origin of a Cartesian coordinate system. See text for 
definitions. 
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with 

n~ = t i_ l X t I 

and 

n 2 = t i × "ti.~l. 

The method described will work in a mechanical 
manner  without requiring elaborate geometrical con- 
structions. A simple example perhaps will be useful. 

In Fig. 1, the sample is at the origin of Cartesian 
coordinates in which components of vectors are 
expressed by (x,y,z). Suppose that point ms+ ~ is 
variable and is measured experimentally by the 
spherical coordinate system with components [r,~,,r/] 
which is related to the Cartesian coordinate system by 
x = r sin ~, cos r/, y = r sin ~, sin r/, and z = r cos 9,. 

Let the scatterer m s_ 1 be located at (0,-3,0),  and let 
the scatterer, or X-ray source, ms_2, be located at 
(0,-6,3).  

Application of (A 1) gives 

t s = r sin ~, cos r/i + r sin ~ sin r/j + r cos ~,k; 

ts_ 1 = 3j; ts_ 2 = 3j - 3k. 

The terms (i,j,k) are unit vectors in the Cartesian 
coordinate system. 

The term n I is determined by 

i j k = 

nl = ts_2 x ts_ 1 = 0 3 - 3  9i. 

0 3 0 

In the same manner, n 2 is found to be 

n 2 = 3r cos ~,i -- 3r sin 9, cos r/k. 

All of the quantities necessary to solve (A2) and 
(A3) have been determined. Use of (A2) results in the 

two total scattering angles 20s_ 1 = z~/4 and 20 s = 
cos-l(s in ~, sin r/). 

Use of (A3) results in the angle of rotation between 
the scattering planes 

Ys, s-I = Cos-l{( 1 + tan2 If cos 2 /])--1/2}. 

Note added in proof. It is emphasized that inverse 
cosines and square roots result in both a positive and a 
negative solution. The definitions used allow the correct 
signs to be selected, but explicit rules may be helpful. 
The negative solution of (A3) is used if n t × n 2 = Lt  l 
with L positive. The angle ~ is negative if e × p = Ns 0 
with N positive. Also, b must be positive if 20 < 7t/2 
and negative if 20 > zc/2. 
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Abstract 

An extrapolative filtering formalism is used to deter- 
mine a high-resolution positive-definite density 
estimator. In an example, comparison with results from 
Fourier transformation of structure factors shows a 
resolution enhancement facto? of 1.3 for the density 
estimator. The density estimator satisfies a maximum- 
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entropy criterion and is the direct-space representation 
of a maximum determinant of structure factors as used 
in phase determination. 

1. Introduction 

In a previous paper (Collins, 1978), hereafter referred 
to as paper I, a foundation was laid for extraction of 
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